Generating sets of finite groups

Author:

Cameron Peter,Lucchini Andrea,Roney-Dougal Colva

Abstract

We investigate the extent to which the exchange relation holds in finite groups G G . We define a new equivalence relation m \equiv _{\mathrm {m}} , where two elements are equivalent if each can be substituted for the other in any generating set for G G . We then refine this to a new sequence m ( r ) \equiv _{\mathrm {m}}^{(r)} of equivalence relations by saying that x m ( r ) y x \equiv _{\mathrm {m}}^{(r)}y if each can be substituted for the other in any r r -element generating set. The relations m ( r ) \equiv _{\mathrm {m}}^{(r)} become finer as r r increases, and we define a new group invariant ψ ( G ) \psi (G) to be the value of r r at which they stabilise to m \equiv _{\mathrm {m}} .

Remarkably, we are able to prove that if G G is soluble, then ψ ( G ) { d ( G ) , \psi (G) \in \{d(G), d ( G ) + 1 } d(G) +1\} , where d ( G ) d(G) is the minimum number of generators of G G , and to classify the finite soluble groups G G for which ψ ( G ) = d ( G ) \psi (G) = d(G) . For insoluble G G , we show that d ( G ) ψ ( G ) d ( G ) + 5 d(G) \leq \psi (G) \leq d(G) + 5 . However, we know of no examples of groups G G for which ψ ( G ) > d ( G ) + 1 \psi (G) > d(G) + 1 .

As an application, we look at the generating graph Γ ( G ) \Gamma (G) of G G , whose vertices are the elements of G G , the edges being the 2 2 -element generating sets. Our relation m ( 2 ) \equiv _{\mathrm {m}}^{(2)} enables us to calculate A u t ( Γ ( G ) ) \mathrm {Aut}(\Gamma (G)) for all soluble groups G G of nonzero spread and to give detailed structural information about A u t ( Γ ( G ) ) \mathrm {Aut}(\Gamma (G)) in the insoluble case.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference27 articles.

1. Mathematics and Its Applications (Springer);Ballester-Bolinches, Adolfo,2006

2. The Magma algebra system. I. The user language;Bosma, Wieb;J. Symbolic Comput.,1997

3. Sets of elements that pairwise generate a linear group;Britnell, J. R.;J. Combin. Theory Ser. A,2008

4. Generation and random generation: from simple groups to maximal subgroups;Burness, Timothy C.;Adv. Math.,2013

5. Hamiltonian cycles in the generating graphs of finite groups;Breuer, T.;Bull. Lond. Math. Soc.,2010

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GRAPHS DEFINED ON GROUPS;INT J GROUP THEORY;2022

2. A Note on Maximal Subgroups and Conjugacy Classes of Finite Groups;Quaestiones Mathematicae;2021-02-17

3. The independence graph of a finite group;Monatshefte für Mathematik;2020-07-22

4. Graphs encoding the generating properties of a finite group;Mathematische Nachrichten;2020-07-08

5. GENERATING MAXIMAL SUBGROUPS OF FINITE ALMOST SIMPLE GROUPS;Forum of Mathematics, Sigma;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3