Abstract
AbstractGiven a finite group G, we denote by $$\Delta (G)$$
Δ
(
G
)
the graph whose vertices are the elements G and where two vertices x and y are adjacent if there exists a minimal generating set of G containing x and y. We prove that $$\Delta (G)$$
Δ
(
G
)
is connected and classify the groups G for which $$\Delta (G)$$
Δ
(
G
)
is a planar graph.
Funder
Università degli Studi di Padova
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Apisa, P., Klopsch, B.: A generalization of the Burnside basis theorem. J. Algebra 400, 8–16 (2014)
2. Blackburn, S.R.: Sets of permutations that generate the symmetric group pairwise. J. Combin. Theory Ser. A 113(7), 1572–1581 (2006)
3. Breuer, T., Guralnick, R., Kantor, W.: Probabilistic generation of finite simple groups II. J. Algebra 320(2), 443–494 (2008)
4. Ballester-Bolinches, A., Ezquerro, L.M.: Classes of finite groups, Mathematics and Its Applications (Springer), vol. 584. Springer, Dordrecht (2006)
5. Breuer, T., Guralnick, R.M., Lucchini, A., Maróti, A., Nagy, G.P.: Hamiltonian cycles in the generating graphs of finite groups. Bull. Lond. Math. Soc. 42, 621–633 (2010)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献