Convergence of restricted additive Schwarz with impedance transmission conditions for discretised Helmholtz problems

Author:

Gong Shihua,Graham Ivan,Spence Euan

Abstract

The Restricted Additive Schwarz method with impedance transmission conditions, also known as the Optimised Restricted Additive Schwarz (ORAS) method, is a simple overlapping one-level parallel domain decomposition method, which has been successfully used as an iterative solver and as a preconditioner for discretised Helmholtz boundary-value problems. In this paper, we give, for the first time, a convergence analysis for ORAS as an iterative solver—and also as a preconditioner—for nodal finite element Helmholtz systems of any polynomial order. The analysis starts by showing (for general domain decompositions) that ORAS is an unconventional finite element approximation of a classical parallel iterative Schwarz method, formulated at the PDE (non-discrete) level. This non-discrete Schwarz method was recently analysed in [Gong, Gander, Graham, Lafontaine, and Spence, Convergence of parallel overlapping domain decomposition methods for the Helmholtz equation], and the present paper gives a corresponding discrete version of this analysis. In particular, for domain decompositions in strips in 2-d, we show that, when the mesh size is small enough, ORAS inherits the convergence properties of the Schwarz method, independent of polynomial order. The proof relies on characterising the ORAS iteration in terms of discrete ‘impedance-to-impedance maps’, which we prove (via a novel weighted finite-element error analysis) converge as h 0 h\rightarrow 0 in the operator norm to their non-discrete counterparts.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3