Local base change via Tate cohomology

Author:

Ronchetti Niccolò

Abstract

We propose a new way to realize cyclic base change (a special case of Langlands functoriality) for prime degree extensions of characteristic zero local fields. Let F / E F / E be a prime degree l l extension of local fields of residue characteristic p l p \neq l . Let π \pi be an irreducible cuspidal l l -adic representation of G L n ( E ) \mathrm {GL}_n(E) and let ρ \rho be an irreducible cuspidal l l -adic representation of G L n ( F ) \mathrm {GL}_n(F) which is Galois-invariant. Under some minor technical conditions on π \pi and ρ \rho (for instance, we assume that both are level zero) we prove that the mod l \bmod \,l -reductions r l ( π ) r_l(\pi ) and r l ( ρ ) r_l(\rho ) are in base change if and only if the Tate cohomology of ρ \rho with respect to the Galois action is isomorphic, as a modular representation of G L n ( E ) \mathrm {GL}_n(E) , to the Frobenius twist of r l ( π ) r_l(\pi ) . This proves a special case of a conjecture of Treumann and Venkatesh as they investigate the relationship between linkage and Langlands functoriality.

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference30 articles.

1. Annals of Mathematics Studies;Arthur, James,1989

2. The principle of functoriality;Arthur, James;Bull. Amer. Math. Soc. (N.S.),2003

3. I. N. Bernstein and K. E. Rummelhart, Draft of: Representations of 𝑝-adic groups, lectures at Harvard University, 1992.

4. Induced representations of reductive 𝔭-adic groups. I;Bernstein, I. N.;Ann. Sci. \'{E}cole Norm. Sup. (4),1977

5. Representations of the group 𝐺𝐿(𝑛,𝐹), where 𝐹 is a local non-Archimedean field;Bernšteĭn, I. N.;Uspehi Mat. Nauk,1976

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3