Boundedness questions for Calabi–Yau threefolds

Author:

Wilson P.

Abstract

In this paper, we study boundedness questions for (simply connected) smooth Calabi–Yau threefolds. The diffeomorphism class of such a threefold is known to be determined up to finitely many possibilities by the integral middle cohomology and two integral forms on the integral second cohomology, namely the cubic cup-product form and the linear form given by cup-product with the second Chern class. The motivating question for this paper is whether knowledge of these cubic and linear forms determines the threefold up to finitely many families, that is the moduli of such threefolds is bounded. If this is true, then in particular the middle integral cohomology would be bounded by knowledge of these two forms.

Crucial to this question is the study of rigid non-movable surfaces on the threefold, which are the irreducible surfaces that deform with any small deformation of the complex structure of the threefold but for which no multiple moves on the threefold. If for instance there are no such surfaces, then the answer to the motivating question is yes (Theorem 0.1). In particular, for given cubic and linear forms on the second cohomology, there must exist such surfaces for large enough third Betti number (Corollary 0.2).

The paper starts by proving general results on these rigid non-movable surfaces and boundedness of the family of threefolds. The basic principle is that if the cohomology classes of these surfaces are also known, then boundedness should hold (Theorem 4.5). The second half of the paper restricts to the case of Picard number 2, where it is shown that knowledge of the cubic and linear forms does indeed bound the family of Calabi–Yau threefolds (Theorem 0.3). This appears to be the first non-trivial case where a general boundedness result for Calabi–Yau threefolds has been proved (without the assumption of a special structure).

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Algebra and Number Theory

Reference38 articles.

1. Boundedness and 𝐾² for log surfaces;Alexeev, Valery;Internat. J. Math.,1994

2. C. Birkar, Lectures on birational geometry, arXiv:1210.2670.

3. On threefolds with trivial canonical bundle;Friedman, Robert,1991

4. Simultaneous resolution of threefold double points;Friedman, Robert;Math. Ann.,1986

5. Balanced metrics on non-Kähler Calabi-Yau threefolds;Fu, Jixiang;J. Differential Geom.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calabi–Yau 3-folds of Picard number 2 with hypersurface Cox rings;European Journal of Mathematics;2022-07-07

2. Modular curves and the refined distance conjecture;Journal of High Energy Physics;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3