Abstract
AbstractWe classify all smooth Calabi–Yau threefolds of Picard number two that have a general hypersurface Cox ring.
Funder
Eberhard Karls Universität Tübingen
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Artebani, M., Comparin, P., Guilbot, R.: Families of Calabi–Yau hypersurfaces in $$\mathbb{Q}$$-Fano toric varieties. J. Math. Pures Appl. 106(2), 319–341 (2016)
2. Artebani, M., Comparin, P., Guilbot, R.: Quasismooth hypersurfaces in toric varieties. Proc. Amer. Math. Soc. 147(11), 4565–4579 (2019)
3. Artebani, M., Correa Deisler, C., Laface, A.: Cox rings of K3 surfaces of Picard number three. J. Algebra 565, 598–626 (2021)
4. Artebani, M., Hausen, J., Laface, A.: On Cox rings of K3 surfaces. Compositio Math. 146(4), 964–998 (2010)
5. Arzhantsev, I., Derenthal, U., Hausen, J., Laface, A.: Cox Rings. Cambridge Studies in Advanced Mathematics, vol. 144. Cambridge University Press, Cambridge (2015)