Products of prime powers in binary recurrence sequences. I. The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation

Author:

Pethö A.,de Weger B. M. M.

Abstract

We show how the Gelfond-Baker theory and diophantine approximation techniques can be applied to solve explicitly the diophantine equation G n = w p 1 m 1 p t m t {G_n} = wp_1^{{m_1}} \cdots p_t^{{m_t}} (where { G n } n = 0 \{ {G_n}\} _{n = 0}^\infty is a binary recurrence sequence with positive discriminant), for arbitrary values of the parameters. We apply this to the equation x 2 + k = p 1 z 1 p t z t {x^2} + k = p_1^{{z_1}} \cdots p_t^{{z_t}} , which is a generalization of the Ramanujan-Nagell equation x 2 + 7 = 2 z {x^2} + 7 = {2^z} . We present algorithms to reduce upper bounds for the solutions of these equations. The algorithms are easy to translate into computer programs. We present an example which shows that in practice the method works well.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Robust Implementation for Solving the S-Unit Equation and Several Applications;Arithmetic Geometry, Number Theory, and Computation;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3