Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra

Author:

Guzmán J.,Leykekhman D.

Abstract

The aim of the paper is to show the stability of the finite element solution for the Stokes system in W 1 W^1_\infty norm on general convex polyhedral domain. In contrast to previously known results, W r 2 W^2_r regularity for r > 3 r>3 , which does not hold for general convex polyhedral domains, is not required. The argument uses recently available sharp Hölder pointwise estimates of the corresponding Green’s matrix together with novel local energy error estimates, which do not involve an error of the pressure in a weaker norm.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference33 articles.

1. Local error estimates for finite element discretizations of the Stokes equations;Arnold, Douglas N.;RAIRO Mod\'{e}l. Math. Anal. Num\'{e}r.,1995

2. Pointwise error estimates of the local discontinuous Galerkin method for a second order elliptic problem;Chen, Hongsen;Math. Comp.,2005

3. Pointwise error estimates for finite element solutions of the Stokes problem;Chen, Hongsen;SIAM J. Numer. Anal.,2006

4. Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations;Dauge, Monique;SIAM J. Math. Anal.,1989

5. Finite element error analysis for state-constrained optimal control of the Stokes equations;de los Reyes, Juan Carlos;Control Cybernet.,2008

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3