Maximum-norm stability of the finite element method for the Neumann problem in nonconvex polygons with locally refined mesh

Author:

Li Buyang

Abstract

The Galerkin finite element solutionuhu_hof the Poisson equationΔu=f-\Delta u=funder the Neumann boundary condition in a possibly nonconvex polygonΩ\varOmega, with a graded mesh locally refined at the corners of the domain, is shown to satisfy the following maximum-norm stability:uhL(Ω)ChuL(Ω),\begin{align*} \|u_h\|_{L^{\infty }(\varOmega )} \le C\ell _h\|u\|_{L^{\infty }(\varOmega )} , \end{align*}whereh=ln(2+1/h)\ell _h = \ln (2+1/h)for piecewise linear elements andh=1\ell _h=1for higher-order elements. As a result of the maximum-norm stability, the following best approximation result holds:uuhL(Ω)ChuIhuL(Ω),\begin{align*} \|u-u_h\|_{L^{\infty }(\varOmega )} \le C\ell _h\|u-I_hu\|_{L^{\infty }(\varOmega )} , \end{align*}whereIhI_hdenotes the Lagrange interpolation operator onto the finite element space. For a locally quasi-uniform triangulation sufficiently refined at the corners, the above best approximation property implies the following optimal-order error bound in the maximum norm:uuhL(Ω){Chhk+22pfWk,p(Ω)amp;if rk+1,Chhk+1fHk(Ω)amp;if r=k,\begin{align*} \|u-u_h\|_{L^\infty (\varOmega )} \le \begin {cases} C\ell _h h^{k+2-\frac {2}{p}} \|f\|_{W^{k,p}(\varOmega )} &\text {if $r\ge k+1$}, \\ C\ell _h h^{k+1} \|f\|_{H^{k}(\varOmega )} &\text {if $r=k$}, \end{cases} \end{align*}wherer1r\ge 1is the degree of finite elements,kkis any nonnegative integer no larger thanrr, andp[2,)p\in [2,\infty )can be arbitrarily large.

Funder

Research Grants Council, University Grants Committee

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference34 articles.

1. Maximum norm error estimates for Neumann boundary value problems on graded meshes;Apel, Thomas;IMA J. Numer. Anal.,2020

2. 𝐿^{∞}-error estimates on graded meshes with application to optimal control;Apel, Thomas;SIAM J. Control Optim.,2009

3. C. Bernardi, M. Dauge, and Y. Maday, Polynomials in the Sobolev world, Preprint, hal-00153795, September 2007, \url{https://hal.archives-ouvertes.fr/hal-00153795v2/file/BeDaMa07b.pdf}.

4. Estimates of best constants for weighted Poincaré inequalities on convex domains;Chua, Seng-Kee;Proc. London Math. Soc. (3),2006

5. Studies in Mathematics and its Applications, Vol. 4;Ciarlet, Philippe G.,1978

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3