Maximum norm error estimates for Neumann boundary value problems on graded meshes

Author:

Apel Thomas1,Rogovs Sergejs1,Pfefferer Johannes2,Winkler Max3

Affiliation:

1. Universität der Bundeswehr München, Institut für Mathematik und Computergestützte Simulation, Neubiberg, Germany

2. Technical University of Munich, Boltzmannstraße, Garching bei München, Germany

3. Chemnitz University of Technology, Chemnitz, Germany

Abstract

AbstractThis paper deals with a priori pointwise error estimates for the finite element solution of boundary value problems with Neumann boundary conditions in polygonal domains. Due to the corners of the domain, the convergence rate of the numerical solutions can be lower than in the case of smooth domains. As a remedy, the use of local mesh refinement near the corners is considered. In order to prove quasi-optimal a priori error estimates, regularity results in weighted Sobolev spaces are exploited. This is the first work on the Neumann boundary value problem where both the regularity of the data is exactly specified and the sharp convergence order $h^{2} \lvert \ln h \rvert $ in the case of piecewise linear finite element approximations is obtained. As an extension we show the same rate for the approximate solution of a semilinear boundary value problem. The proof relies in this case on the supercloseness between the Ritz projection to the continuous solution and the finite element solution.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference33 articles.

1. Finite element error estimates on the boundary with application to optimal control;Apel;Math. Comp.,2015

2. ${L}^{\infty }$-error estimates on graded meshes with application to optimal control;Apel;SIAM J. Numer. Anal.,2009

3. Local mesh refinement in 2 and 3 dimensions;Bänsch;IMPACT Comput. Sci. Eng.,1991

4. The Mathematical Theory of Finite Element Methods

5. Local energy estimates for the finite element method on sharply varying grids;Demlow;Math. Comp.,2010

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3