Superconvergence analysis of the linear finite element method and a gradient recovery postprocessing on anisotropic meshes

Author:

Cao Weiming

Abstract

For the linear finite element method based on general unstructured anisotropic meshes in two dimensions, we establish the superconvergence in energy norm of the finite element solution to the interpolation of the exact solution for elliptic problems. We also prove the superconvergence of the postprocessing process based on the global L 2 L^2 -projection of the gradient of the finite element solution. Our basic assumptions are: (i) the mesh is quasi-uniform under a Riemannian metric and (ii) each adjacent element pair forms an approximate (anisotropic) parallelogram. The analysis follows the same methodology developed by Bank and Xu in 2003 for the case of quasi-uniform meshes, and the results can be considered as an extension of their conclusion to the adaptive anisotropic meshes. Numerical examples involving both internal and boundary layers are presented in support of the theoretical analysis.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference37 articles.

1. Pure and Applied Mathematics (New York);Ainsworth, Mark,2000

2. Numerical Mathematics and Scientific Computation;Babuška, Ivo,2001

3. Asymptotically exact a posteriori error estimators. I. Grids with superconvergence;Bank, Randolph E.;SIAM J. Numer. Anal.,2003

4. Asymptotically exact a posteriori error estimators. II. General unstructured grids;Bank, Randolph E.;SIAM J. Numer. Anal.,2003

5. On the error of linear interpolation and the orientation, aspect ratio, and internal angles of a triangle;Cao, Weiming;SIAM J. Numer. Anal.,2005

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anisotropic Adaptive Finite Elements for a p-Laplacian Problem;Computational Methods in Applied Mathematics;2024-06-26

2. Anisotropic Adaptive Finite Elements for an Elliptic Problem with Strongly Varying Diffusion Coefficient;Computational Methods in Applied Mathematics;2022-05-26

3. An adaptive algorithm for the transport equation with time dependent velocity;SN Applied Sciences;2020-08-28

4. Anisotropic Mesh Refinement Considering a Recovery-Based Error Estimator and Metric Tensors;Arabian Journal for Science and Engineering;2018-12-10

5. Polynomial preserving recovery on boundary;Journal of Computational and Applied Mathematics;2016-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3