Affiliation:
1. Institute of Mathematics , 27218 EPFL , 1015 Lausanne , Switzerland
Abstract
Abstract
The p-Laplacian problem
-
∇
⋅
(
(
μ
+
|
∇
u
|
p
-
2
)
∇
u
)
=
f
{-\nabla\cdot((\mu+|\nabla u|^{p-2})\nabla u)=f}
is considered,
where μ is a given positive number. An anisotropic a posteriori residual-based error estimator is presented. The error estimator is shown to be equivalent, up to higher order terms, to the error in a quasi-norm. The involved constants being independent of μ, the solution, the mesh size and aspect ratio. An adaptive algorithm is proposed and numerical results are presented when
p
=
3
{p=3}
. From this model problem, we propose a simplified error estimator and use it in the framework of an industrial application, namely a nonlinear Navier–Stokes problem arising from aluminium electrolysis.
Reference53 articles.
1. M. Ainsworth and J. T. Oden,
A posteriori error estimation in finite element analysis,
Comput. Methods Appl. Mech. Engrg. 142 (1997), no. 1–2, 1–88.
2. M. Ainsworth, J. Z. Zhu, A. W. Craig and O. C. Zienkiewicz,
Analysis of the Zienkiewicz–Zhu a posteriori error estimator in the finite element method,
Internat. J. Numer. Methods Engrg. 28 (1989), no. 9, 2161–2174.
3. F. Alauzet and A. Loseille,
A decade of progress on anisotropic mesh adaptation for computational fluid dynamics,
Comput.-Aided Des. 72 (2016), 13–39.
4. I. Babuška, J. Chandra and J. E. Flaherty,
Adaptive Computational Methods for Partial Differential Equations,
Society for Industrial and Applied Mathematics, Philadelphia, 1983.
5. I. Babuška, R. Durán and R. Rodríguez,
Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements,
SIAM J. Numer. Anal. 29 (1992), no. 4, 947–964.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献