Amoebas and coamoebas are the logarithmic images of algebraic varieties and the images of algebraic varieties under the arg-map, respectively. We present new techniques for computational problems on amoebas and coamoebas, thus establishing new connections between (co-)amoebas, semialgebraic and convex algebraic geometry and semidefinite programming.
Our approach is based on formulating the membership problem in amoebas (respectively coamoebas) as a suitable real algebraic feasibility problem. Using the real Nullstellensatz, this allows us to tackle the problem by sums of squares techniques and semidefinite programming. Our method yields polynomial identities as certificates of non-containment of a point in an amoeba or coamoeba. As the main theoretical result, we establish some degree bounds on the polynomial certificates. Moreover, we provide some actual computations of amoebas based on the sums of squares approach.