Affiliation:
1. Plekhanov Russian University of Economics
Abstract
In this paper, we propose a method for computing and visualizing the amoeba of a Laurent polynomial in several complex variables, which is applicable in arbitrary dimension. The algorithms developed based on this method are implemented as a free web service (http://amoebas.ru), which enables interactive computation of amoebas for polynomials in two variables, as well as provides a set of computed amoebas and their cross-sections in higher dimensions. The correctness and running time of the proposed algorithms are tested using a set of optimal polynomials in two, three, and four variables, which are generated using Mathematica computer algebra system. The developed program code makes it possible, in particular, to generate optimal hypergeometric polynomials in an arbitrary number of variables supported in an arbitrary zonotope given by a set of generating vectors.
Publisher
The Russian Academy of Sciences
Reference24 articles.
1. Абрамов С.А., Рябенко А.А., Хмельнов Д.Е. Лорановы, рациональные и гипергеометрические решения линейных -разностных систем произвольного порядка с полиномиальными коэффициентами // Программирование, 2018, No 2. С. 60–73.
2. Gelfand I.M., Kapranov M.M., Zelevinsky A.V. Discriminants, resultants, and multidimensional determinants. Birkhäuser, 1994.
3. Viro O. What is an amoeba? // Notices of the AMS. 2002. V. 49. Issue 8. P. 916–917.
4. Cherkis S.A., Ward R.S. Moduli of monopole walls and amoebas // J. High Energy Physics. 2012. Issue 5. 90.
5. Fujimori T., Nitta M., Ohta K., Sakai N., Yamazaki M. Intersecting solitons, amoeba, and tropical geometry // Physical Review D – Particles, Fields, Gravitation, and Cosmology. 2008. V. 78. Issue 10. 105004.