Complete manifolds with nonnegative curvature operator

Author:

Ni Lei,Wu Baoqiang

Abstract

In this short note, as a simple application of the strong result proved recently by Böhm and Wilking, we give a classification on closed manifolds with 2 2 -nonnegative curvature operator. Moreover, by the new invariant cone constructions of Böhm and Wilking, we show that any complete Riemannian manifold (with dimension 3 \ge 3 ) whose curvature operator is bounded and satisfies the pinching condition R δ tr ( R ) 2 n ( n 1 ) I > 0 R\ge \delta \frac {\operatorname {tr}(R)}{2n(n-1)} \mathrm {I}>0 , for some δ > 0 \delta >0 , must be compact. This provides an intrinsic analogue of a result of Hamilton on convex hypersurfaces.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference17 articles.

1. [BW] C. Böhm and B. Wilking, Manifolds with positive curvature operator are space form, preprint.

2. Pointwise \frac14-pinched 4-manifolds;Chen, Haiwen;Ann. Global Anal. Geom.,1991

3. Complete Riemannian manifolds with pointwise pinched curvature;Chen, Bing-Long;Invent. Math.,2000

4. [CLN] B. Chow, P. Lu and L. Ni, Hamilton’s Ricci flow, Graduate Studies in Mathematics, AMS Press, 2006, 608 pp.

5. Four-manifolds with positive curvature operator;Hamilton, Richard S.;J. Differential Geom.,1986

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Curvature Operator of the Second Kind in Dimension Three;The Journal of Geometric Analysis;2024-04-20

2. Betti numbers and the curvature operator of the second kind;Journal of the London Mathematical Society;2023-07-18

3. Kähler manifolds and the curvature operator of the second kind;Mathematische Zeitschrift;2023-03-22

4. Pinched hypersurfaces are compact;Advanced Nonlinear Studies;2023-01-01

5. Tachibana-type theorems and special Holonomy;Annals of Global Analysis and Geometry;2022-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3