Abstract
AbstractWe prove rigidity results for compact Riemannian manifolds in the spirit of Tachibana. For example, we observe that manifolds with divergence-free Weyl tensors and "Equation missing"-nonnegative curvature operators are locally symmetric or conformally equivalent to a quotient of the sphere. The main focus of the paper is to prove similar results for manifolds with special holonomy. In particular, we consider Kähler manifolds with divergence-free Bochner tensors. For quaternion Kähler manifolds, we obtain a partial result towards the LeBrun–Salamon conjecture.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Analysis
Reference53 articles.
1. Alekseevskii, D.V.: Riemannian spaces with exceptional holonomy groups. Funct. Anal. Appl. 2, 97–105 (1968)
2. Amann, M.: Positive quaternion Kähler manifolds with fourth Betti number equal to one. Topology Appl. 158(2), 183–189 (2011)
3. Amann, M.: Partial classification results for positive quaternion Kähler manifolds. Int. J. Math. 23(2), 1250038, 39 (2012)
4. Ballmann, W.: Lectures on Kähler manifolds, ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich (2006)
5. Berger, M.: Trois remarques sur les variétés riemanniennes à courbure positive. C. R. Acad. Sci. Paris Sér. A-B 263, A76–A78 (1966)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献