Hierarchical structure of the family of curves with maximal genus verifying flag conditions

Author:

Di Gennaro Vincenzo

Abstract

Fix integers r , s 1 , , s l r,s_{1},\dots ,s_{l} such that 1 l r 1 1\leq l\leq r-1 and s l r l + 1 s_{l}\geq r-l+1 , and let C ( r ; s 1 , , s l ) \mathcal {C}(r;s_{1},\dots ,s_{l}) be the set of all integral, projective and nondegenerate curves C C of degree s 1 s_{1} in the projective space P r \mathbf {P}^{r} , such that, for all i = 2 , , l i=2,\dots ,l , C C does not lie on any integral, projective and nondegenerate variety of dimension i i and degree > s i >s_{i} . We say that a curve C C satisfies the flag condition ( r ; s 1 , , s l ) (r;s_{1},\dots ,s_{l}) if C C belongs to C ( r ; s 1 , , s l ) \mathcal {C}(r;s_{1},\dots ,s_{l}) . Define G ( r ; s 1 , , s l ) = max { p a ( C ) : C C ( r ; s 1 , , s l ) } , G(r;s_{1},\dots ,s_{l})=\operatorname {max}\left \{p_{a}(C):\,C\in \mathcal {C}(r;s_{1},\dots ,s_{l})\right \}, where p a ( C ) p_{a}(C) denotes the arithmetic genus of C C . In the present paper, under the hypothesis s 1 s l s_{1}\gg \dots \gg s_{l} , we prove that a curve C C satisfying the flag condition ( r ; s 1 , , s l ) (r;s_{1},\dots ,s_{l}) and of maximal arithmetic genus p a ( C ) = G ( r ; s 1 , , s l ) p_{a}(C)=G(r;s_{1},\dots ,s_{l}) must lie on a unique flag such as C = V s 1 1 V s 2 2 V s l l P r C=V_{s_{1}}^{1}\subset V_{s_{2}}^{2}\subset \dots \subset V_{s_{l}}^{l}\subset {\mathbf {P}^{r}} , where, for any i = 1 , , l i=1,\dots ,l , V s i i V_{s_{i}}^{i} denotes an integral projective subvariety of P r {\mathbf {P}^{r}} of degree s i s_{i} and dimension i i , such that its general linear curve section satisfies the flag condition ( r i + 1 ; s i , , s l ) (r-i+1;s_{i},\dots ,s_{l}) and has maximal arithmetic genus G ( r i + 1 ; s i , , s l ) G(r-i+1;s_{i},\dots ,s_{l}) . This proves the existence of a sort of a hierarchical structure of the family of curves with maximal genus verifying flag conditions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference10 articles.

1. [C] G. Castelnuovo, Ricerche di geometria sulle curve algebriche, Zanichelli, Bologna (1937).

2. The genus of projective curves;Chiantini, L.;Duke Math. J.,1993

3. On the genus of projective curves verifying certain flag conditions;Chiantini, Luca;Boll. Un. Mat. Ital. B (7),1996

4. Hilbert functions of finite sets of points and the genus of a curve in a projective space;Ciliberto, Ciro,1987

5. A bound on the geometric genus of projective varieties verifying certain flag conditions;Di Gennaro, Vincenzo;Trans. Amer. Math. Soc.,1997

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the genus of projective curves not contained in hypersurfaces of given degree;Rendiconti del Circolo Matematico di Palermo Series 2;2022-11-24

2. The genus of curves in $${\mathbb {P}}^4$$ and $${\mathbb {P}}^5$$ not contained in quadrics;Rendiconti del Circolo Matematico di Palermo Series 2;2022-07-29

3. A remark on the genus of curves in $${\mathbf {P}}^4$$;Rendiconti del Circolo Matematico di Palermo Series 2;2019-09-24

4. A speciality theorem for curves in P5;Geometriae Dedicata;2007-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3