A bound on the geometric genus of projective varieties verifying certain flag conditions

Author:

Di Gennaro Vincenzo

Abstract

Fix integers n , r , s 1 , . . . , s l n,r,s_{1},...,s_{l} and let S ( n , r ; s 1 , . . . , s l ) \mathcal {S}(n,r;s_{1},...,s_{l}) be the set of all integral, projective and nondegenerate varieties V V of degree s 1 s_{1} and dimension n n in the projective space P r \mathbf {P}^{r} , such that, for all i = 2 , . . . , l i=2,...,l , V V does not lie on any variety of dimension n + i 1 n+i-1 and degree > s i >s_{i} . We say that a variety V V satisfies a flag condition of type ( n , r ; s 1 , . . . , s l ) (n,r;s_{1},...,s_{l}) if V V belongs to S ( n , r ; s 1 , . . . , s l ) \mathcal {S}(n,r;s_{1},...,s_{l}) . In this paper, under the hypotheses s 1 >> . . . >> s l s_{1}>>...>>s_{l} , we determine an upper bound G h ( n , r ; s 1 , . . . , s l ) G^{h}(n,r;s_{1},...,s_{l}) , depending only on n , r , s 1 , . . . , s l n,r,s_{1},...,s_{l} , for the number G ( n , r ; s 1 , . . . , s l ) := m a x { p g ( V ) : V S ( n , r ; s 1 , . . . , s l ) } G(n,r;s_{1},...,s_{l}):= {max} {\{} p_{g}(V) : V\in \mathcal {S}(n,r;s_{1},...,s_{l}){\}} , where p g ( V ) p_{g}(V) denotes the geometric genus of V V . In case n = 1 n=1 and l = 2 l=2 , the study of an upper bound for the geometric genus has a quite long history and, for n 1 n\geq 1 , l = 2 l=2 and s 2 = r n s_{2}=r-n , it has been introduced by Harris. We exhibit sharp results for particular ranges of our numerical data n , r , s 1 , . . . , s l n,r,s_{1},...,s_{l} . For instance, we extend Halphen’s theorem for space curves to the case of codimension two and characterize the smooth complete intersections of dimension n n in P n + 3 \mathbf {P}^{n+3} as the smooth varieties of maximal geometric genus with respect to appropriate flag condition. This result applies to smooth surfaces in P 5 \mathbf {P}^{5} . Next we discuss how far G h ( n , r ; s 1 , . . . , s l ) G^{h}(n,r;s_{1},...,s_{l}) is from G ( n , r ; s 1 , . . . , s l ) G(n,r;s_{1},...,s_{l}) and show a sort of lifting theorem which states that, at least in certain cases, the varieties V S ( n , r ; s 1 , . . . , s l ) V\in \mathcal {S}(n,r;s_{1},...,s_{l}) of maximal geometric genus G ( n , r ; s 1 , . . . , s l ) G(n,r;s_{1},...,s_{l}) must in fact lie on a flag such as V = V s 1 n V s 2 n + 1 . . . V s l n + l 1 P r V=V_{s_{1}}^{n}\subset V_{s_{2}}^{n+1}\subset ...\subset V_{s_{l}}^{n+l-1}\subset {\mathbf {P}^{r}} , where V s j V^{j}_{s} denotes a subvariety of P r \mathbf {P}^{r} of degree s s and dimension j j . We also discuss further generalizations of flag conditions, and finally we deduce some bounds for Castelnuovo’s regularity of varieties verifying flag conditions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference33 articles.

1. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Arbarello, E.,1985

2. A bound for the degree of smooth surfaces in 𝑃⁴ not of general type;Braun, Robert;Compositio Math.,1994

3. [Ca] G.Castelnuovo, Ricerche di geometria sulle curve algebriche, Zanichelli, Bologna, 1937.

4. A few remarks on the lifting problem;Chiantini, Luca;Ast\'{e}risque,1993

5. The genus of projective curves;Chiantini, L.;Duke Math. J.,1993

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the genus of projective curves not contained in hypersurfaces of given degree;Rendiconti del Circolo Matematico di Palermo Series 2;2022-11-24

2. Hierarchical structure of the family of curves with maximal genus verifying flag conditions;Proceedings of the American Mathematical Society;2007-11-09

3. BOUNDEDNESS FOR CODIMENSION TWO SUBVARIETIES;International Journal of Mathematics;2002-07

4. SELF-INTERSECTION OF THE CANONICAL BUNDLE OF A PROJECTIVE VARIETY;Communications in Algebra;2001-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3