Totally geodesic submanifolds of the complex and the quaternionic 2-Grassmannians

Author:

Klein Sebastian

Abstract

In this article, the totally geodesic submanifolds in the complex 2 2 -Grassmannian G 2 ( C n + 2 ) G_2(\mathbb {C}^{n+2}) and in the quaternionic 2 2 -Grassmannian G 2 ( H n + 2 ) G_2(\mathbb {H}^{n+2}) are classified. It turns out that for both of these spaces, the earlier classification of maximal totally geodesic submanifolds in Riemannian symmetric spaces of rank 2 2 published by Chen and Nagano (1978) is incomplete. For example, G 2 ( H n + 2 ) G_2(\mathbb {H}^{n+2}) with n 5 n \geq 5 contains totally geodesic submanifolds isometric to a H P 2 \mathbb {H}P^2 , its metric scaled such that the minimal sectional curvature is 1 5 \tfrac 15 ; they are maximal in G 2 ( H 7 ) G_2(\mathbb {H}^7) . G 2 ( C n + 2 ) G_2(\mathbb {C}^{n+2}) with n 4 n \geq 4 contains totally geodesic submanifolds which are isometric to a C P 2 \mathbb {C}P^2 contained in the H P 2 \mathbb {H}P^2 mentioned above; they are maximal in G 2 ( C 6 ) G_2(\mathbb {C}^6) . Neither submanifolds are mentioned by Chen and Nagano.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. Riemannian geometry of complex two-plane Grassmannians;Berndt, J.;Rend. Sem. Mat. Univ. Politec. Torino,1997

2. Totally geodesic submanifolds of symmetric spaces. II;Chen, Bang-yen;Duke Math. J.,1978

3. Pure and Applied Mathematics;Helgason, Sigurdur,1978

4. [K] S. Klein, Totally geodesic submanifolds of the complex quadric, Differential Geom. Appl. 26 (2008), 79–96.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Results on Derivatives of the Shape Operator of Real Hypersurfaces in the Complex Quadric;International Electronic Journal of Geometry;2024-04-23

2. Homogeneous Geodesics of $4$-dimensional Solvable Lie Groups;International Electronic Journal of Geometry;2024-04-23

3. On the Structure Lie Operator of a Real Hypersurface in the Complex Quadric;Mathematica Slovaca;2023-12-01

4. SEMI-SYMMETRIC STRUCTURE JACOBI OPERATOR FOR REAL HYPERSURFACES IN THE COMPLEX QUADRIC;B KOREAN MATH SOC;2023

5. Invariant contact metric structures on tangent sphere bundles of compact symmetric spaces;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3