Author:
Perez Juan De Dios,Pérez-lópez David
Abstract
A real hypersurface $M$ in the complex quadric $Q^{m}=SO_{m+2}/SO_mSO_2$ inherits an almost contact metric structure . This structure allows to define, for any nonnull real number $k$, the so called $k$-th generalized Tanaka-Webster connection on $M$, $\hat{\nabla}^{(k)}$. If $\nabla$ denotes the Levi-Civita connection on $M$, we introduce the concepts of $(\hat{\nabla}^{(k)},\nabla)$-Codazzi and $(\hat{\nabla}^{(k)},\nabla)$-Killing shape operator $S$ of the real hypersurface and classify real hypersurfaces in $Q$ satisfying any of these conditions.
Publisher
International Electronic Journal of Geometry, Person (Kazim ILARSLAN)
Reference13 articles.
1. [1] Berndt, J. and Suh, Y. J.: On the geometry of homogeneous real hypersurfaces in the complex quadric. In: Proceedings of the 16th International
Workshop on Differential Geometry and the 5th KNUGRG-OCAMI Differential Geometry Workshop 16, 1-9 (2012).
2. [2] Berndt, J. and Suh, Y. J.: Real hypersurfaces with isometric Reeb flow in complex quadric. Internat. J. Math. 24, 1350050 (18pp) (2013).
3. [3] Cho, J.T.: CR-structures on real hypersurfaces of a complex space form. Publ. Math. Debr. 54, 473-487(1999).
4. [4] Kimura, M.,Lee, H., Pérez, J.D. and Suh, Y.J.: Ruled real hypersurfaces in the complex quadric., J. Geom. Anal., 31 (2021), 7989-8012.
5. [5] Klein, S. : Totally geodesic submanifolds of the complex quadric and the quaternionic 2-Grassmannians. Trans. Amer. Math. Soc. 361, 4927-
4967(2009).