We study the oscillatory hyper-Hilbert transform
H
n
,
α
,
β
f
(
x
)
=
∫
0
1
f
(
x
−
Γ
(
t
)
)
e
i
t
−
β
t
−
1
−
α
d
t
\begin{equation} H_{n,\alpha ,\beta }f(x)=\int ^1_0 f(x-\Gamma (t))e^{it^{-\beta }}t^{-1-\alpha }dt \end{equation}
along the curve
Γ
(
t
)
=
(
t
p
1
,
t
p
2
,
⋯
,
t
p
n
)
\Gamma (t)=(t^{p_1},t^{p_2},\cdots ,t^{p_n})
, where
p
1
,
p
2
,
⋯
,
p
n
,
α
,
β
p_1,p_2,\cdots ,p_n,\alpha ,\beta
are some real positive numbers. We prove that if
β
>
(
n
+
1
)
α
\beta >(n+1)\alpha
, then
H
n
,
α
,
β
H_{n,\alpha ,\beta }
is bounded on
L
p
L^p
whenever
p
∈
(
2
β
2
β
−
(
n
+
1
)
α
,
2
β
(
n
+
1
)
α
)
p \in (\frac {2\beta }{2\beta -(n+1)\alpha },\frac {2\beta }{(n+1)\alpha })
. Furthermore, we also prove that
H
n
,
α
,
β
H_{n,\alpha ,\beta }
is bounded on
L
2
L^2
when
β
=
(
n
+
1
)
α
\beta =(n+1)\alpha
. Our work improves and extends some known results by Chandarana in 1996 and in a preprint. As an application, we obtain an
L
p
L^p
boundedness result for some strongly parabolic singular integrals with rough kernels.