Affiliation:
1. School of Mathematics and Statistics, Chaohu University , Hefei Anhui , China
Abstract
Abstract
We study the boundedness of the oscillatory integral
T
α
,
β
f
(
x
,
y
)
=
∫
Q
2
f
(
x
−
γ
1
(
t
)
,
y
−
γ
2
(
s
)
)
e
−
2
π
i
t
−
β
1
s
−
β
2
t
−
α
1
−
1
s
−
α
2
−
1
d
t
d
s
{T}_{\alpha ,\beta }f\left(x,y)=\mathop{\int }\limits_{{Q}^{2}}f\left(x-{\gamma }_{1}\left(t),y-{\gamma }_{2}\left(s)){e}^{-2\pi i{t}^{-{\beta }_{1}}{s}^{-{\beta }_{2}}}{t}^{{-\alpha }_{1}-1}{s}^{-{\alpha }_{2}-1}{\rm{d}}t{\rm{d}}s
on Wiener amalgam spaces, where
Q
2
=
[
0
,
1
]
×
[
0
,
1
]
{Q}^{2}=\left[0,1]\times \left[0,1]
is the unit square in two dimensions,
(
x
,
y
)
∈
R
n
×
R
m
,
γ
1
(
t
)
=
(
t
p
1
,
t
p
2
,
…
,
t
p
n
)
,
γ
2
(
s
)
=
(
s
q
1
,
s
q
2
,
…
,
s
q
m
)
\left(x,y)\in {{\mathbb{R}}}^{n}\times {{\mathbb{R}}}^{m},{\gamma }_{1}\left(t)=\left({t}^{{p}_{1}},{t}^{{p}_{2}},\ldots ,{t}^{{p}_{n}}),{\gamma }_{2}\left(s)=\left({s}^{{q}_{1}},{s}^{{q}_{2}},\ldots ,{s}^{{q}_{m}})
are homogeneous curves on
R
n
{{\mathbb{R}}}^{n}
and
R
m
{{\mathbb{R}}}^{m}
.
Reference17 articles.
1. H. G. Feichtinger
,
Banach spaces of distributions of Wiener’s type and interpolation
, in:
H. G. Feichtinger
,
Sz.-Nagy
, and
E. Gorlich
(eds.),
Functional Analysis and Approximation, ISNM 60: International Series of Numerical Mathematics
, vol. 60, 1981, pp. 153–165, https://doi.org/10.1007/978-3-0348-9369-5_16.
2. H. G. Feichtinger
,
Banach Convolution algebra of Wiener type
, in:
Proceedings of the Conference on Functions Series, Operators, Budapest 1980, Colloquia Mathematica Societatis János Bolyai
, vol. 35, North-Holland, Amsterdam, 1983, pp. 509–524.
3. A. Bényi
and
T. Oh
, Modulation spaces, Wiener amalgam spaces and Brownian motion, Adv. Math. 228 (2011), no. 5, 2943–2981, https://doi.org/10.1016/j.aim.2011.07.023.
4. E. Cordero
and
F. Nicola
, Sharpness of some properties of Wiener amalgam and modulation spaces, Bull. Aust. Math. Soc. 80 (2009), no. 1, 105–116, https://doi.org/10.1017/S0004972709000070.
5. E. Cordero
and
F. Nicola
, Pseudodifferential operators on
Lp
, Wiener amalgam and modulation spaces, Int. Math. Res. Not. IMRN 2010 (2010), no. 10, 1860–1893, https://doi.org/10.1093/imrn/rnp190.