The theory of ordered abelian groups does not have the independence property

Author:

Gurevich Y.,Schmitt P. H.

Abstract

We prove that no complete theory of ordered abelian groups has the independence property, thus answering a question by B. Poizat. The main tool is a result contained in the doctoral dissertation of Yuri Gurevich and also in P. H. Schmitt’s Elementary properties of ordered abelian groups, which basically transforms statements on ordered abelian groups into statements on coloured chains. We also prove that every n n -type in the theory of coloured chains has at most 2 n {2^n} coheirs, thereby strengthening a result by B. Poizat.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference16 articles.

1. F. Delon, A counterexample concerning the number of coheirs, private communication by B. Poizat.

2. \bysame, Types sur 𝐶((𝑋)), Théories Stables, 2^{∘} année, IHP, Paris, 1981.

3. Les corps pseudo-finis ont la propriété d’indépendance;Duret, Jean-Louis;C. R. Acad. Sci. Paris S\'{e}r. A-B,1980

4. The first order properties of products of algebraic systems;Feferman, S.;Fund. Math.,1959

5. Y. Gurevich, The decision problem for some algebraic theories, Doctoral Dissertation, Sverdlovsk, U.S.S.R., 1968.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterizing NIP henselian fields;Journal of the London Mathematical Society;2024-03

2. Elimination of imaginaries in C((Γ))$\mathbb {C}((\Gamma ))$;Journal of the London Mathematical Society;2023-05-22

3. Topological fields with a generic derivation;Annals of Pure and Applied Logic;2023-03

4. ELIMINATION OF IMAGINARIES IN ORDERED ABELIAN GROUPS WITH BOUNDED REGULAR RANK;The Journal of Symbolic Logic;2023-02-06

5. Geometric decision procedures and the VC dimension of linear arithmetic theories;Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science;2022-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3