Characterizing NIP henselian fields

Author:

Anscombe Sylvy1ORCID,Jahnke Franziska23ORCID

Affiliation:

1. Université Paris Cité and Sorbonne Université, CNRS, IMJ‐PRG Paris France

2. Institute for Logic Language and Computation Universiteit van Amsterdam Amsterdam Netherlands

3. Institut für Mathematische Logik und Grundlagenforschung Universität Münster Münster Germany

Abstract

AbstractIn this paper, we characterize NIP (Not the Independence Property) henselian valued fields modulo the theory of their residue field, both in an algebraic and in a model‐theoretic way. Assuming the conjecture that every infinite NIP field is either separably closed, real closed, or admits a nontrivial henselian valuation, this allows us to obtain a characterization of all theories of NIP fields.

Funder

Leverhulme Trust

Deutsche Forschungsgemeinschaft

Daimler und Benz Stiftung

Publisher

Wiley

Reference37 articles.

1. The model theory of Cohen rings

2. S.Anscombe P.Dittmann andF.Jahnke Ax–Kochen–Ershov principles for finitely ramified henselian valued fields Manuscript arXiv:2305.12145 [math.LO] 2023.

3. NOTES ON EXTREMAL AND TAME VALUED FIELDS

4. Diophantine Problems Over Local Fields I

5. Types dans les corps valués munis d'applications coefficients

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3