Degrees of recursively saturated models

Author:

Macintyre Angus,Marker David

Abstract

Using relativizations of results of Goncharov and Peretyat’kin on decidable homogeneous models, we prove that if M M is S S -saturated for some Scott set S S , and F F is an enumeration of S S , then M M has a presentation recursive in F F . Applying this result we are able to classify degrees coding (i) the reducts of models of PA to addition or multiplication, (ii) internally finite initial segments and (iii) nonstandard residue fields. We also use our results to simplify Solovay’s characterization of degrees coding nonstandard models of Th(N).

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference28 articles.

1. The elementary theory of finite fields;Ax, James;Ann. of Math. (2),1968

2. P. Cegielski, K. McAloon and G. Wilmers, Modeles recursivement satures de l’addition et de la multiplication des entiers naturels, preprint.

3. Strong constructivizability of homogeneous models;Gončarov, S. S.;Algebra i Logika,1978

4. L. Harrington, Building arithmetical models of PA, handwritten notes, Berkeley, 1979.

5. Uniform upper bounds on ideals of Turing degrees;Hodes, Harold T.;J. Symbolic Logic,1978

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EXPANDING THE REALS BY CONTINUOUS FUNCTIONS ADDS NO COMPUTATIONAL POWER;The Journal of Symbolic Logic;2022-09-26

2. COMPUTING STRENGTH OF STRUCTURES RELATED TO THE FIELD OF REAL NUMBERS;The Journal of Symbolic Logic;2017-03

3. COMPARING TWO VERSIONS OF THE REALS;The Journal of Symbolic Logic;2016-08-12

4. COMPUTABLE STRUCTURES IN GENERIC EXTENSIONS;The Journal of Symbolic Logic;2016-05-10

5. AUTOMORPHISM GROUPS OF COUNTABLE ARITHMETICALLY SATURATED MODELS OF PEANO ARITHMETIC;The Journal of Symbolic Logic;2015-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3