COMPUTING STRENGTH OF STRUCTURES RELATED TO THE FIELD OF REAL NUMBERS

Author:

IGUSA GREGORY,KNIGHT JULIA F.,SCHWEBER NOAH DAVID

Abstract

AbstractIn [8], the third author defined a reducibility $\le _w^{\rm{*}}$ that lets us compare the computing power of structures of any cardinality. In [6], the first two authors showed that the ordered field of reals ${\cal R}$ lies strictly above certain related structures. In the present paper, we show that $\left( {{\cal R},exp} \right) \equiv _w^{\rm{*}}{\cal R}$. More generally, for the weak-looking structure ${\cal R}$ consisting of the real numbers with just the ordering and constants naming the rationals, all o-minimal expansions of ${\cal R}$ are equivalent to ${\cal R}$. Using this, we show that for any analytic function f, $\left( {{\cal R},f} \right) \equiv _w^{\rm{*}}{\cal R}$. (This is so even if $\left( {{\cal R},f} \right)$ is not o-minimal.)

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference17 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complexity profiles and generic Muchnik reducibility;Advances in Mathematics;2024-01

2. EXPANDING THE REALS BY CONTINUOUS FUNCTIONS ADDS NO COMPUTATIONAL POWER;The Journal of Symbolic Logic;2022-09-26

3. Computable valued fields;Archive for Mathematical Logic;2017-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3