On upper bounds of Chalk and Hua for exponential sums

Author:

Cochrane Todd,Zheng Zhiyong

Abstract

Let f f be a polynomial of degree d d with integer coefficients, p p any prime, m m any positive integer and S ( f , p m ) S(f,p^m) the exponential sum S ( f , p m ) = x = 1 p m e p m ( f ( x ) ) S(f,p^m)= \sum _{x=1}^{p^m} e_{p^m}(f(x)) . We establish that if f f is nonconstant when read ( mod p ) \pmod p , then | S ( f , p m ) | 4.41 p m ( 1 1 d ) |S(f,p^m)|\le 4.41 p^{m(1-\frac 1d)} . Let t = ord p ( f ) t=\text {ord}_p(f’) , let α \alpha be a zero of the congruence p t f ( x ) 0 ( mod p ) p^{-t}f’(x) \equiv 0 \pmod p of multiplicity ν \nu and let S α ( f , p m ) S_\alpha (f,p^m) be the sum S ( f , p m ) S(f,p^m) with x x restricted to values congruent to α ( mod p m ) \alpha \pmod {p^m} . We obtain | S α ( f , p m ) | min { ν , 3.06 } p t ν + 1 p m ( 1 1 ν + 1 ) |S_\alpha (f,p^m)| \le \min \{\nu ,3.06\} p^{\frac t{\nu +1}}p^{m(1-\frac 1{\nu +1})} for p p odd, m t + 2 m \ge t+2 and d p ( f ) 1 d_p(f)\ge 1 . If, in addition, p ( d 1 ) ( 2 d ) / ( d 2 ) p \ge (d-1)^{(2d)/(d-2)} , then we obtain the sharp upper bound | S α ( f , p m ) | p m ( 1 1 ν + 1 ) |S_\alpha (f,p^m)| \le p^{m(1-\frac 1{\nu +1})} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference47 articles.

1. N.M. Akulinichev, Estimates for rational trigonometric sums of a special type, Doklady Acad. Sci. USSR 161 (1965), 743-745. English transl. in Doklady 161, no. 4 (1965), 480-482.

2. On Hua’s estimates for exponential sums;Chalk, J. H. H.;Mathematika,1987

3. J.R. Chen, On the representation of natural numbers as a sum of terms of the form 𝑥(𝑥+1)…(𝑥+𝑘-1)/𝑘!, Acta Math. Sin. 8 (1958), 253-257.

4. On Professor Hua’s estimate of exponential sums;Chen, Jing Run;Sci. Sinica,1977

5. Analytic number theory in China. I;Chen, Jing Run,1988

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The sum-of-digits function in rings of residue classes;Periodica Mathematica Hungarica;2024-07-02

2. On Sárközy’s theorem for shifted primes;Journal of the American Mathematical Society;2023-09-28

3. Exponential Sums;Universitext;2020

4. Counting polynomial subset sums;The Ramanujan Journal;2018-07-11

5. The Thirties;Springer Monographs in Mathematics;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3