Kähler-Ricci flow on projective bundles over Kähler-Einstein manifolds

Author:

Fong Frederick Tsz-Ho

Abstract

We study the Kähler-Ricci flow on a class of projective bundles P ( O Σ L ) \mathbb {P}(\mathcal {O}_\Sigma \oplus L) over the compact Kähler-Einstein manifold Σ n \Sigma ^n . Assuming the initial Kähler metric ω 0 \omega _0 admits a U ( 1 ) U(1) -invariant momentum profile, we give a criterion, characterized by the triple ( Σ , L , [ ω 0 ] ) (\Sigma , L, [\omega _0]) , under which the P 1 \mathbb {P}^1 -fiber collapses along the Kähler-Ricci flow and the projective bundle converges to Σ \Sigma in the Gromov-Hausdorff sense. Furthermore, the Kähler-Ricci flow must have Type I singularity and is of ( C n × P 1 ) (\mathbb {C}^n \times \mathbb {P}^1) -type. This generalizes and extends part of Song-Weinkove’s work on Hirzebruch surfaces.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference38 articles.

1. [ACGT] Vestislav Apostolov, David M. J. Calderbank, Paul Gauduchon, and Christina W. Tønnesen-Friedman, Extremal Kähler metrics on ruled manifolds and stability, Astérisque (2008), no. 322, 93–150, Géométrie différentielle, physique mathématique, mathématiques et société. II.

2. Équations du type Monge-Ampère sur les variétés kähleriennes compactes;Aubin, Thierry;C. R. Acad. Sci. Paris S\'{e}r. A-B,1976

3. Manifolds with 1/4-pinched curvature are space forms;Brendle, Simon;J. Amer. Math. Soc.,2009

4. Extremal Kähler metrics;Calabi, Eugenio,1982

5. Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds;Cao, Huai Dong;Invent. Math.,1985

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the finite time collapsing rate of Kähler-Ricci flow on projective bundles;Proceedings of the American Mathematical Society;2023-09-01

2. Scalar V-soliton equation and Kähler-Ricci flow on symplectic quotients;Advances in Mathematics;2020-09

3. The Continuity Method on Fano Fibrations;International Mathematics Research Notices;2018-10-19

4. On a twisted conical Kähler–Ricci flow;Annals of Global Analysis and Geometry;2018-07-12

5. The Kähler–Ricci flow on Fano bundles;Mathematische Zeitschrift;2017-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3