Manifolds with 1/4-pinched curvature are space forms

Author:

Brendle Simon,Schoen Richard

Abstract

Let ( M , g 0 ) (M,g_0) be a compact Riemannian manifold with pointwise 1 / 4 1/4 -pinched sectional curvatures. We show that the Ricci flow deforms g 0 g_0 to a constant curvature metric. The proof uses the fact, also established in this paper, that positive isotropic curvature is preserved by the Ricci flow in all dimensions. We also rely on earlier work of Hamilton and of Böhm and Wilking.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. Andrews-Nguyen B. Andrews and H. Nguyen, Four-manifolds with 1/4-pinched flag curvatures, preprint (2007).

2. Les variétés Riemanniennes (1/4)-pincées;Berger, M.;Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3),1960

3. Bohm-Wilking C. Böhm and B. Wilking, Manifolds with positive curvature operator are space forms, Ann. of Math. 167, 1079–1097 (2008).

4. Classification of manifolds with weakly 1/4-pinched curvatures;Brendle, Simon;Acta Math.,2008

5. Ricci flow with surgery on four-manifolds with positive isotropic curvature;Chen, Bing-Long;J. Differential Geom.,2006

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Curvature Operator of the Second Kind in Dimension Three;The Journal of Geometric Analysis;2024-04-20

2. Bennet Chow: “Ricci Solitons in Low Dimensions”. AMS 2023, 339 pp;Jahresbericht der Deutschen Mathematiker-Vereinigung;2024-04-04

3. First eigenvalues of free boundary hypersurfaces in the unit ball along the inverse mean curvature flow;Differential Geometry and its Applications;2024-04

4. Evolution of the first eigenvalue along the inverse mean curvature flow in space forms;Journal of Mathematical Analysis and Applications;2024-04

5. Ancient Solutions of Ricci Flow with Type I Curvature Growth;The Journal of Geometric Analysis;2024-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3