Ergodic theorems for the asymmetric simple exclusion process

Author:

Liggett Thomas M.

Abstract

Consider the infinite particle system on the integers with the simple exclusion interaction and one-particle motion determined by p ( x , x + 1 ) = p p(x,x + 1) = p and p ( x , x 1 ) = q p(x,x - 1) = q for x Z x \in Z , where p + q = 1 p + q = 1 and p > q p > q . If μ \mu is the initial distribution of the system, let μ t {\mu _t} be the distribution at time t. The main results determine the limiting behavior of μ t {\mu _t} as t t \to \infty for simple choices of μ \mu . For example, it is shown that if μ \mu is the pointmass on the configuration in which all sites to the left of the origin are occupied, while those to the right are vacant, then the system converges as t t \to \infty to the product measure on { 0 , 1 } Z {\{ 0,1\} ^Z} with density 1 / 2 1/2 . For the proof, an auxiliary process is introduced which is of interest in its own right. It is a process on the positive integers in which particles move according to the simple exclusion process, but with the additional feature that there can be creation and destruction of particles at one. Ergodic theorems are proved for this process also.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. A class of interactions in an infinite particle system;Holley, Richard;Advances in Math.,1970

2. Pressure and Helmholtz free energy in a dynamic model of a lattice gas;Holley, Richard,1972

3. A characterization of the invariant measures for an infinite particle system with interactions;Liggett, Thomas M.;Trans. Amer. Math. Soc.,1973

4. A characterization of the invariant measures for an infinite particle system with interactions. II;Liggett, Thomas M.;Trans. Amer. Math. Soc.,1974

5. Convergence to total occupancy in an infinite particle system with interactions;Liggett, Thomas M.;Ann. Probability,1974

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3