Stationary measure for the open KPZ equation

Author:

Corwin Ivan1,Knizel Alisa2

Affiliation:

1. Department of Mathematics Columbia University New York New York USA

2. Department of Mathematics Barnard College, Columbia University New York New York USA

Abstract

AbstractWe provide the first construction of stationary measures for the open KPZ equation on the spatial interval [0,1] with general inhomogeneous Neumann boundary conditions at 0 and 1 depending on real parameters u and v, respectively. When , we uniquely characterize the constructed stationary measures through their multipoint Laplace transform, which we prove is given in terms of a stochastic process that we call the continuous dual Hahn process. Our work relies on asymptotic analysis of Bryc and Wesołowski's Askey–Wilson process formulas for the open ASEP stationary measure (which in turn arise from Uchiyama, Sasamoto and Wadati's Askey‐Wilson Jacobi matrix representation of Derrida et al.'s matrix product ansatz) in conjunction with Corwin and Shen's proof that open ASEP converges to open KPZ under weakly asymmetric scaling.

Funder

National Science Foundation

Division of Mathematical Sciences

Simons Foundation

Publisher

Wiley

Subject

Applied Mathematics,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. KPZ fluctuations in finite volume;SciPost Physics Lecture Notes;2024-06-12

2. Askey–Wilson Signed Measures and Open ASEP in the Shock Region;International Mathematics Research Notices;2024-05-30

3. Fluctuations of random Motzkin paths II;Latin American Journal of Probability and Mathematical Statistics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3