Hamilton’s gradient estimate for the heat kernel on complete manifolds

Author:

Kotschwar Brett

Abstract

In this paper we extend a gradient estimate of R. Hamilton for positive solutions to the heat equation on closed manifolds to bounded positive solutions on complete, non-compact manifolds with R c K g Rc \geq -Kg . We accomplish this extension via a maximum principle of L. Karp and P. Li and a Berstein-type estimate on the gradient of the solution. An application of our result, together with the bounds of P. Li and S.T. Yau, yields an estimate on the gradient of the heat kernel for complete manifolds with non-negative Ricci curvature that is sharp in the order of t t for the heat kernel on R n {\mathbb {R}}^n .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference13 articles.

1. An extension of E. Hopf’s maximum principle with an application to Riemannian geometry;Calabi, E.;Duke Math. J.,1958

2. [CLN] Chow Bennett; Lu, Peng; Ni, Lei. Hamilton’s Ricci Flow. Lectures in Contemporary Mathematics, Science Press, and Graduate Studies in Mathematics, Vol. 77, American Mathematical Society, Providence, RI, 2006.

3. A matrix Harnack estimate for the heat equation;Hamilton, Richard S.;Comm. Anal. Geom.,1993

4. [KL] Karp, L. and Li, P. The heat equation on complete riemannian manifolds. Unpublished notes, 1982.

5. [KZ] Kuang, S. and Zhang, Q. S. A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow. arXiv:math/0611298

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improvement of the sharp Li–Yau bound on closed manifolds;Archiv der Mathematik;2024-08-06

2. Matrix Li–Yau–Hamilton estimates under Ricci flow and parabolic frequency;Calculus of Variations and Partial Differential Equations;2024-02-26

3. Differential gradient estimates for nonlinear parabolic equations under integral Ricci curvature bounds;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-01-29

4. Differential Harnack inequality for the Newell–Whitehead–Segel equation under Finsler-geometric flow;International Journal of Geometric Methods in Modern Physics;2023-11-16

5. Elliptic gradient estimates for a nonlinear equation with Dirichlet boundary condition;Journal of Geometry and Physics;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3