Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Abolarinwa, A.: Gradient estimates for a nonlinear parabolic equation with potential under geometric flow. Elctron. J. Differ. Equ. 2015(15), 1–11 (2015)
2. Azami, S.: Gradient estimates for a weighted parabolic equation under geometric flow. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 117, 74 (2023). https://doi.org/10.1007/s13398-023-01408-8
3. Azami, S.: Differential Harnack inequality for a parabolic equation under the Finsler-geometric flow. Mediterr. J. Math. 20, 58 (2023). https://doi.org/10.1007/s00009-023-02290-9
4. Bakry, D., Qian, Z.M.: Harnack inequalities on a manifold with positive or negative Ricci curvature. Rev. Mat. Iberoam. 15(1), 143–179 (1999)
5. Chen, Q., Zhao, G.: Li-Yau type and Souplet-Zhang type gradient estimates of a parabolic equation for the V-Laplacian. J. Math. Anal. Appl. 463(2), 744–759 (2018)