On the Andrews-Stanley refinement of Ramanujan’s partition congruence modulo 5 and generalizations

Author:

Berkovich Alexander,Garvan Frank

Abstract

In a recent study of sign-balanced, labelled posets, Stanley introduced a new integral partition statistic s r a n k ( π ) = O ( π ) O ( π ) , \begin{equation*} \mathrm {srank}(\pi ) = {\mathcal O}(\pi ) - {\mathcal O}(\pi ’), \end{equation*} where O ( π ) {\mathcal O}(\pi ) denotes the number of odd parts of the partition π \pi and π \pi ’ is the conjugate of π \pi . In a forthcoming paper, Andrews proved the following refinement of Ramanujan’s partition congruence mod 5 5 : p 0 ( 5 n + 4 ) a m p ; p 2 ( 5 n + 4 ) 0 ( mod 5 ) , p ( n ) a m p ; = p 0 ( n ) + p 2 ( n ) , \begin{align*} p_0(5n+4) &\equiv p_2(5n+4) \equiv 0 \pmod {5}, p(n) &= p_0(n) + p_2(n), \end{align*} where p i ( n ) p_i(n) ( i = 0 , 2 i=0,2 ) denotes the number of partitions of n n with s r a n k i ( mod 4 ) \mathrm {srank}\equiv i\pmod {4} and p ( n ) p(n) is the number of unrestricted partitions of n n . Andrews asked for a partition statistic that would divide the partitions enumerated by p i ( 5 n + 4 ) p_i(5n+4) ( i = 0 , 2 i=0,2 ) into five equinumerous classes. In this paper we discuss three such statistics: the ST-crank, the 2 2 -quotient-rank and the 5 5 -core-crank. The first one, while new, is intimately related to the Andrews-Garvan (1988) crank. The second one is in terms of the 2 2 -quotient of a partition. The third one was introduced by Garvan, Kim and Stanton in 1990. We use it in our combinatorial proof of the Andrews refinement. Remarkably, the Andrews result is a simple consequence of a stronger refinement of Ramanujan’s congruence mod 5 5 . This more general refinement uses a new partition statistic which we term the BG-rank. We employ the BG-rank to prove new partition congruences modulo 5 5 . Finally, we discuss some new formulas for partitions that are 5 5 -cores and discuss an intriguing relation between 3 3 -cores and the Andrews-Garvan crank.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. G. E. Andrews, On a partition function of Richard Stanley, to appear in the Electronic Journal of Combinatorics volume in honor of Richard Stanley.

2. Dyson’s crank of a partition;Andrews, George E.;Bull. Amer. Math. Soc. (N.S.),1988

3. Some properties of partitions;Atkin, A. O. L.;Proc. London Math. Soc. (3),1954

4. C. E. Boulet, A four-parameter partition identity, preprint.

5. F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10–15.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3