Some generating functions and inequalities for the andrews–stanley partition functions

Author:

Chen Na,Chern Shane,Fan Yan,Xia Ernest X. W.

Abstract

Abstract Let $\mathcal {O}(\pi )$ denote the number of odd parts in an integer partition $\pi$ . In 2005, Stanley introduced a new statistic $\operatorname {srank}(\pi )=\mathcal {O}(\pi )-\mathcal {O}(\pi ')$ , where $\pi '$ is the conjugate of $\pi$ . Let $p(r,\,m;n)$ denote the number of partitions of $n$ with srank congruent to $r$ modulo $m$ . Generating function identities, congruences and inequalities for $p(0,\,4;n)$ and $p(2,\,4;n)$ were then established by a number of mathematicians, including Stanley, Andrews, Swisher, Berkovich and Garvan. Motivated by these works, we deduce some generating functions and inequalities for $p(r,\,m;n)$ with $m=16$ and $24$ . These results are refinements of some inequalities due to Swisher.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference13 articles.

1. 1. Abramowitz, M. and Stegun, I. A. , eds. Handbook of mathematical functions with formulas, graphs, and mathematical tables (United States Department of Commerce, National Bureau of Standards, 10th printing, 1972).

2. Ramanujan’s Notebooks

3. On the partition function $p(n)$;Rademacher;Proc. London Math. Soc. (2),1937

4. 10969

5. On a Partition Function of Richard Stanley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3