Stability theorems for some functional equations

Author:

MacCamy R. C.,Wong J. S. W.

Abstract

Functional-differential equations of the form \[ u ˙ ( t ) = 0 t A ( t τ ) g ( u ( τ ) ) d τ + f ( t , u ( t ) ) \dot u(t) = - \int _0^t {A(t - \tau )g(u(\tau ))d\tau + f(t,u(t))} \] are considered. Here u ( t ) u(t) is to be an element of a Hilbert space H , A ( t ) \mathcal {H},A(t) a family of bounded symmetric operators on H \mathcal {H} and g an operator with domain in H \mathcal {H} . g may be unbounded. A is called strongly positive if there exists a semigroup exp St, where S is symmetric and ( S ξ , ξ ) m ξ 2 , m > 0 (S\xi ,\xi ) \leqq - m{\left \| \xi \right \|^2},m > 0 , such that A = A exp {A^ \ast } = A - \exp St is positive, that is, \[ 0 T ( v ( t ) , 0 t A ( t τ ) v ( τ ) ) d τ 0 , \int \nolimits _0^T \left ( {v(t),\int _0^t {{A^\ast }(t - \tau )v(\tau )} } \right )d\tau \geqq 0, \] for all smooth v ( t ) v(t) . It is shown that if A is strongly positive, and g and f are suitably restricted, then any solution which is weakly bounded and uniformly continuous must tend weakly to zero. Examples are given of both ordinary and partial differential-functional equations.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. An abstract Volterra equation with applications to linear viscoelasticity;Dafermos, Constantine M.;J. Differential Equations,1970

2. On dissipation inequalities and linear viscoelasticity;Gurtin, M. E.;Quart. Appl. Math.,1965

3. On the asymptotic behavior of the solutions of an integro-differential equation;Halanay, A.;J. Math. Anal. Appl.,1965

4. Indirect abelian theorems and a linear Volterra equation;Hannsgen, Kenneth B.;Trans. Amer. Math. Soc.,1969

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3