Affiliation:
1. Institut für Mathematik , Technische Universität Berlin , Straße des 17. Juni 136, 10623 Berlin , Germany
Abstract
Abstract
The initial value problem for an evolution equation of type
v
′
+
A
v
+
B
K
v
=
f
{v^{\prime}+Av+BKv=f}
is studied, where
A
:
V
A
→
V
A
′
{A:V_{A}\to V_{A}^{\prime}}
is a monotone, coercive operator and where
B
:
V
B
→
V
B
′
{B:V_{B}\to V_{B}^{\prime}}
induces an inner product. The Banach space
V
A
{V_{A}}
is not required to be embedded in
V
B
{V_{B}}
or vice versa.
The operator K incorporates a Volterra integral operator in time of convolution type with an exponentially decaying kernel. Existence of a global-in-time solution is shown by proving convergence of a suitable time discretisation. Moreover, uniqueness as well as stability results are proved. Appropriate integration-by-parts formulae are a key ingredient for the analysis.
Subject
Applied Mathematics,Computational Mathematics,Numerical Analysis
Reference55 articles.
1. V. Barbu, P. Colli, G. Gilardi and M. Grasselli,
Existence, uniqueness, and longtime behavior for a nonlinear Volterra integrodifferential equation,
Differential Integral Equations 13 (2000), no. 10–12, 1233–1262.
2. A. Bátkai and S. Piazzera,
Semigroups for Delay Equations,
Res. Notes Math. 10,
A K Peters, Wellesley, 2005.
3. S. Bonaccorsi and G. Desch,
Volterra equations in Banach spaces with completely monotone kernels,
NoDEA Nonlinear Differential Equations Appl. 20 (2013), no. 3, 557–594.
4. H. Brézis,
Analyse Fonctionnelle: Théorie et Applications,
Dunod, Paris, 1999.
5. M. P. Calvo, E. Cuesta and C. Palencia,
Runge–Kutta convolution quadrature methods for well-posed equations with memory,
Numer. Math. 107 (2007), no. 4, 589–614.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献