The flat model structure on complexes of sheaves

Author:

Gillespie James

Abstract

Let C h ( O ) \mathbf {Ch}(\mathcal {O}) be the category of chain complexes of O \mathcal {O} -modules on a topological space T T (where O \mathcal {O} is a sheaf of rings on T T ). We put a Quillen model structure on this category in which the cofibrant objects are built out of flat modules. More precisely, these are the dg-flat complexes. Dually, the fibrant objects will be called dg-cotorsion complexes. We show that this model structure is monoidal, solving the previous problem of not having any monoidal model structure on C h ( O ) \mathbf {Ch}(\mathcal {O}) . As a corollary, we have a general framework for doing homological algebra in the category S h ( O ) \mathbf {Sh}(\mathcal {O}) of O \mathcal {O} -modules. I.e., we have a natural way to define the functors Ext \operatorname {Ext} and Tor \operatorname {Tor} in S h ( O ) \mathbf {Sh}(\mathcal {O}) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference27 articles.

1. Covers and envelopes in Grothendieck categories: flat covers of complexes with applications;Aldrich, S. Tempest;J. Algebra,2001

2. All modules have flat covers;Bican, L.;Bull. London Math. Soc.,2001

3. Homotopy theories and model categories;Dwyer, W. G.,1995

4. How to make Ext vanish;Eklof, Paul C.;Bull. London Math. Soc.,2001

5. Flat covers in the category of quasi-coherent sheaves over the projective line;Enochs, Edgar;Comm. Algebra,2004

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized tilting theory in functor categories;Glasgow Mathematical Journal;2023-07-10

2. Model Structures on the Category of Complexes of Quiver Representations;Bulletin of the Iranian Mathematical Society;2021-02-27

3. Enlargement of (fibered) derivators;Journal of Pure and Applied Algebra;2020-03

4. Cotorsion pairs and adjoint functors in the homotopy category of N-complexes;Journal of Algebra and Its Applications;2019-12-11

5. Purity and homotopy theory of coalgebras;Journal of Pure and Applied Algebra;2019-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3