Abstract
AbstractThis paper is devoted to the study of generalized tilting theory of functor categories in different levels. First, we extend Miyashita’s proof (Math Z 193:113–146,1986) of the generalized Brenner–Butler theorem to arbitrary functor categories
$\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C})$
with
$\mathcal{C}$
an annuli variety. Second, a hereditary and complete cotorsion pair generated by a generalized tilting subcategory
$\mathcal{T}$
of
$\mathop{\textrm{Mod}}\nolimits \!(\mathcal{C})$
is constructed. Some applications of these two results include the equivalence of Grothendieck groups
$K_0(\mathcal{C})$
and
$K_0(\mathcal{T})$
, the existences of a new abelian model structure on the category of complexes
$\mathop{\textrm{C}}\nolimits \!(\!\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C}))$
, and a t-structure on the derived category
$\mathop{\textrm{D}}\nolimits \!(\!\mathop{\textrm{Mod}}\nolimits \!(\mathcal{C}))$
.
Publisher
Cambridge University Press (CUP)