Approximation and regularization of Lipschitz functions: Convergence of the gradients

Author:

Czarnecki Marc-Olivier,Rifford Ludovic

Abstract

We examine the possible extensions to the Lipschitzian setting of the classical result on C 1 C^1 -convergence: first (approximation), if a sequence ( f n ) (f_n) of functions of class C 1 C^1 from R N \mathbb {R}^N to R \mathbb {R} converges uniformly to a function f f of class C 1 C^1 , then the gradient of f f is a limit of gradients of f n f_n in the sense that graph ( f ) lim inf n + graph ( f n ) \operatorname {graph}(\nabla f)\subset \liminf _{n\to +\infty } \operatorname {graph}(\nabla f_n) ; second (regularization), the functions ( f n ) (f_n) can be chosen to be of class C C^{\infty } and C 1 C^1 -converging to f f in the sense that lim n + f n f + f n f = 0 \lim _{n\to +\infty } \|f_n-f\|_{\infty }+ \|\nabla f_n-\nabla f\|_{\infty }=0 . In other words, the space of C C^{\infty } functions is dense in the space of C 1 C^1 functions endowed with the C 1 C^1 pseudo-norm. We first deepen the properties of Warga’s counterexample (1981) for the extension of the approximation part to the Lipschitzian setting. This part cannot be extended, even if one restricts the approximation schemes to the classical convolution and the Lasry-Lions regularization. We thus make more precise various results in the literature on the convergence of subdifferentials. We then show that the regularization part can be extended to the Lipschitzian setting, namely if f : R N R f:\mathbb {R}^N \rightarrow {\mathbb R} is a locally Lipschitz function, we build a sequence of smooth functions ( f n ) n N (f_n)_{n \in \mathbb {N}} such that a m p ; a m p ; lim n + f n f = 0 , a m p ; a m p ; lim n + d H a u s ( graph ( f n ) , graph ( f ) ) = 0. \begin{eqnarray*} &&\lim _{n\to +\infty } \|f_n-f\|_{\infty }=0,\\ &&\lim _{n\to +\infty } d_{Haus}(\operatorname {graph}(\nabla f_n), \operatorname {graph}(\partial f))=0. \end{eqnarray*} In other words, the space of C C^{\infty } functions is dense in the space of locally Lipschitz functions endowed with an appropriate Lipschitz pseudo-distance. Up to now, Rockafellar and Wets (1998) have shown that the convolution procedure permits us to have the equality lim sup n + graph ( f n ) = graph ( f ) \limsup _{n\to +\infty } \operatorname {graph}(\nabla f_n) =\operatorname {graph}(\partial f) , which cannot provide the exactness of our result. As a consequence, we obtain a similar result on the regularization of epi-Lipschitz sets. With both functional and set parts, we improve previous results in the literature on the regularization of functions and sets.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference38 articles.

1. Convergence de fonctions convexes, des sous-différentiels et semi-groupes associés;Attouch, Hédy;C. R. Acad. Sci. Paris S\'{e}r. A-B,1977

2. Applicable Mathematics Series;Attouch, H.,1984

3. On the convergence of subdifferentials of convex functions;Attouch, Hédy;Arch. Math. (Basel),1993

4. Systems \& Control: Foundations \& Applications;Aubin, Jean-Pierre,1990

5. Convergence de la dérivée de la régularisée Lasry-Lions;Benoist, Joël;C. R. Acad. Sci. Paris S\'{e}r. I Math.,1992

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3