Author:
Gaitsgory Vladimir,Shvartsman Ilya
Abstract
<p style='text-indent:20px;'>We consider infinite horizon optimal control problems with time averaging and time discounting criteria and give estimates for the Cesàro and Abel limits of their optimal values in the case when they depend on the initial conditions. We establish that these limits are bounded from above by the optimal value of a certain infinite dimensional (ID) linear programming (LP) problem and that they are bounded from below by the optimal value of the corresponding dual problem. (These estimates imply, in particular, that the Cesàro and Abel limits exist and are equal to each other if there is no duality gap). In addition, we obtain IDLP-based optimality conditions for the long run average optimal control problem, and we illustrate these conditions by an example.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献