On certain convex sets in the space of locally schlicht functions

Author:

Kim Y. J.,Merkes E. P.

Abstract

Let H = H ( , [ + ] ) H = H{(^ \ast },[ + ]) denote the real linear space of locally schlicht normalized functions in | z | > 1 |z| > 1 as defined by Hornich. Let K and C respectively be the classes of convex functions and the close-to-convex functions. If M H M \subset H there is a closed nonempty convex set in the α β \alpha \beta -plane such that for ( α , β ) (\alpha ,\beta ) in this set α f [ + ] β g C {\alpha ^ \ast }f[ + ]{\beta ^ \ast }g \in C (in K) whenever f, g M g \in M . This planar convex set is explicitly given when M is the class K, the class C, and for other classes. Some consequences of these results are that K and C are convex sets in H and that the extreme points of C are not in K.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference7 articles.

1. The close-to-convexity and univalence of an integral;Causey, W. M.;Math. Z.,1967

2. A Banach space of locally univalent functions;Cima, J. A.;Michigan Math. J.,1970

3. Ein Banachraum analytischer Funktionen in Zusammenhang mit den schlichten Funktionen;Hornich, Hans;Monatsh. Math.,1969

4. Close-to-convex schlicht functions;Kaplan, Wilfred;Michigan Math. J.,1952

5. On the univalence of a certain integral;Merkes, E. P.;Proc. Amer. Math. Soc.,1971

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Gap Condition for the Zeros and Singularities of a Certain Class of Products;Complex Analysis and Operator Theory;2024-06-22

2. Radius of convexity for integral operators involving Hornich operations;Journal of Mathematical Analysis and Applications;2021-10

3. Zeros of complex polynomials and Kaplan classes;Analysis Mathematica;2020-08-05

4. Hornich Operations on Functions of Bounded Boundary Rotations and Order $$\alpha $$;Computational Methods and Function Theory;2019-05-27

5. On Certain Families of Analytic Functions in the Hornich Space;Computational Methods and Function Theory;2018-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3