Abstract
AbstractWe carry out complete membership to Kaplan classes of functions given by formula $$\begin{aligned} \{\zeta \in {\mathbb {C}}:|\zeta |<1\}\ni z\mapsto \prod \limits _{k=1}^n (1-z\textrm{e}^{-\textrm{i}t_k})^{p_k}, \end{aligned}$$
{
ζ
∈
C
:
|
ζ
|
<
1
}
∋
z
↦
∏
k
=
1
n
(
1
-
z
e
-
i
t
k
)
p
k
,
where $$n\in \mathbb N$$
n
∈
N
, $$t_k\in [0;2\pi )$$
t
k
∈
[
0
;
2
π
)
and $$p_k\in \mathbb R$$
p
k
∈
R
for $$k\in \mathbb N\cap [1;n]$$
k
∈
N
∩
[
1
;
n
]
. In this way we extend Sheil-Small’s, Jahangiri’s and our previous results. Moreover, physical and geometric applications of the obtained gap condition are given. The first one is an interpretation in terms of mass and density. The second one is a visualization in terms of angular inequalities between vectors in $$\mathbb {R}^2$$
R
2
.
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Springer-Verlag, New York (2001)
2. Duren, P.L.: Univalent Functions, Grundlehren der Mathematischen Wissenschaften (259). Springer-Verlag, New York (1983)
3. Goodman, A.W.: Univalent Functions, vol. II. Mariner Pub. Co. Inc, Tampa, Florida (1983)
4. Ignaciuk, S., Parol, M.: Zeros of complex polynomials and Kaplan classes. Anal. Math. 46, 769–779 (2020). https://doi.org/10.1007/s10476-020-0044-8
5. Ignaciuk, S., Parol, M.: Kaplan classes of a certain family of functions. Ann. UMCS Sectio A Math. 74(2), 31–40 (2020). https://doi.org/10.17951/a.2020.74.2.31-40