Endomorphism rings of torsionless modules

Author:

Jategaonkar Arun Vinayak

Abstract

Let A be a right order in a semisimple ring Σ , M A \Sigma ,{M_A} be a finite-dimensional torsionless right A-module and M ^ A {\hat M_A} be the injective hull of M. J. M. Zelmanowitz has shown that Q = E n d M ^ A Q = {\rm {End}}\;{\hat M_A} is a semisimple ring and S = E n d M A S = {\rm {End}}\;{M_A} is a right order in Q. Further, if A is a two-sided order in Σ \Sigma then S is a two-sided order in Q. We give a conceptual proof of this result. Moreover, we show that if A is a bounded order then so is S. The underlying idea of our proofs is very simple. Rather than attacking S = E n d M A S = {\rm {End}}\;{M_A} directly, we prove the results for B = E n d ( M A A A ) B = {\rm {End}}\;({M_A} \oplus {A_A}) . If e : M A A A M A A A e:{M_A} \oplus {A_A} \to {M_A} \oplus {A_A} is the projection on M along A A {A_A} then, of course, S e B e S \cong eBe and it is easy to transfer the required information from B to S. The reason why it is any easier to look at B rather than S is that M A A A {M_A} \oplus {A_A} is a generator in mod - A \bmod \text {-}A and a Morita type transfer of properties from A to B is available. We construct an Artinian ring resp. Noetherian prime ring containing a right ideal whose endomorphism ring fails to be Artinian resp. Noetherian from either side.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An extension of $S$--noetherian rings and modules;International Electronic Journal of Algebra;2023-07-10

2. An extension of S-artinian rings and modules to a hereditary torsion theory setting;Communications in Algebra;2020-11-24

3. On the inheritance of the strongly π-extending property;Communications in Algebra;2016-10-28

4. Injectivity and Some of Its Generalizations;Extensions of Rings and Modules;2013

5. MODULES WITH FULLY INVARIANT SUBMODULES ESSENTIAL IN FULLY INVARIANT SUMMANDS;Communications in Algebra;2002-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3