The Eisenbud-Evans generalized principal ideal theorem and determinantal ideals

Author:

Bruns Winfried

Abstract

In [2] Eisenbud and Evans gave an important generalization of Krull’s Principal Ideal Theorem. However, their proof, using maximal Cohen-Macaulay modules, may have limited the validity of their theorem to a proper subclass of all local rings. (Hochster proved the existence of maximal Cohen-Macaulay modules for local rings which contain a field, cf. [4]). In the first section we present a proof which is simpler and guarantees the Generalized Principal Ideal Theorem for all local rings. The main result of the second section was conjectured in [2]. Under a hypothesis typically being satisfied for the most important fitting invariant of a module, it improves the Eagon-Northcott bound [1] on the height of a determinantai ideal considerably. Finally we will discuss the implications of a recent theorem of Fairings [3] on determinantal ideals.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. Ideals defined by matrices and a certain complex associated with them;Eagon, J. A.;Proc. Roy. Soc. London Ser. A,1962

2. A generalized principal ideal theorem;Eisenbud, David;Nagoya Math. J.,1976

3. Ein Kriterium für vollständige Durchschnitte;Faltings, Gerd;Invent. Math.,1981

4. M. Hochster, Deep local rings, preprint, Aarhus, 1973.

5. Principal ideal theorems;Hochster, Melvin,1979

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maximal Cohen–Macaulay modules over certain Segre products;Communications in Algebra;2018-03-21

2. Families of artinian and low dimensional determinantal rings;Journal of Pure and Applied Algebra;2018-03

3. Homological Conjectures and Lim Cohen-Macaulay Sequences;Homological and Computational Methods in Commutative Algebra;2017

4. Codimension and connectedness of degeneracy loci over local rings;Mathematische Zeitschrift;2016-11-16

5. Criteria for Componentwise Linearity;Communications in Algebra;2015-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3