Ideals defined by matrices and a certain complex associated with them

Author:

Abstract

For each matrix, whose elements belong to a commutative ring with an identity element, there is defined a free complex. This complex is a generalization of the standard Koszul complex, which corresponds to the case of a matrix with only a single row. The applications are to certain ideals defined by the maximal subdeterminants of a matrix. It is found that such an ideal has finite projective dimension whenever its grade reaches a certain greatest value (depending on the dimensions of the matrix) and that, in these circum stances, the complex provides a free resolution of the correct length. For semi-regular ( = M acaulayCohen) rings this leads to a theorem on unmixed ideals. In the case of arbitrary Noetherian rings, a general theorem on rank is proved.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 242 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3