Quasiconformal mappings and chord-arc curves

Author:

Semmes Stephen W.

Abstract

Given a quasiconformal mapping ρ \rho on the plane, what conditions on its dilatation μ \mu guarantee that ρ ( R ) \rho ({\mathbf {R}}) is rectifiable and ρ | R \rho {|_{\mathbf {R}}} is locally absolutely continuous? We show in this paper that if μ \mu satisfies certain quadratic Carleson measure conditions, with small norm, then ρ ( R ) \rho ({\mathbf {R}}) is a chord-arc curve with small constant, and ρ ( x ) = ρ ( 0 ) + 0 x e a ( t ) d t \rho (x) = \rho (0) + \int _0^x {{e^{a(t)}}dt} for x R x \in {\mathbf {R}} , with a BMO a \in \operatorname {BMO} having small norm. Conversely, given any such map from R C {\mathbf {R}} \to {\mathbf {C}} , we show that it has an extension to C {\mathbf {C}} with the right kind of dilatation. Similar results hold with R {\mathbf {R}} replaced by a chord-arc curve. Examples are given that show that it would be hard to improve these results. Applications are given to conformal welding and the theorem of Coifman and Meyer on the real analyticity of the Riemann mapping on the manifold of chord-arc curves.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference34 articles.

1. Quasiconformal reflections;Ahlfors, Lars V.;Acta Math.,1963

2. Van Nostrand Mathematical Studies, No. 10;Ahlfors, Lars V.,1966

3. Conformality with respect to Riemannian metrics;Ahlfors, Lars V.;Ann. Acad. Sci. Fenn. Ser. A. I.,1955

4. Riemann’s mapping theorem for variable metrics;Ahlfors, Lars;Ann. of Math. (2),1960

5. Harmonic measures supported on curves;Bishop, C. J.;Pacific J. Math.,1989

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3