Parametrization of the p-Weil–Petersson Curves: Holomorphic Dependence

Author:

Wei Huaying,Matsuzaki KatsuhikoORCID

Abstract

AbstractSimilar to the Bers simultaneous uniformization, the product of thep-Weil–Petersson Teichmüller spaces for$$p \ge 1$$p1provides the coordinates for the space ofp-Weil–Petersson embeddings$$\gamma $$γof the real line$${\mathbb {R}}$$Rinto the complex plane$${\mathbb {C}}$$C. We prove the biholomorphic correspondence from this space to thep-Besov space of$$u=\log \gamma '$$u=logγon$${\mathbb {R}}$$Rfor$$p>1$$p>1. From this fundamental result, several consequences follow immediately which clarify the analytic structures concerning parameter spaces ofp-Weil–Petersson curves. Specifically, it implies that the correspondence of the Riemann mapping parameters to the arc-length parameters preserving the images of curves is a homeomorphism with bi-real-analytic dependence of the change of parameters. This is analogous to the classical theorem of Coifman and Meyer for chord-arc curves.

Funder

Japan Society for the Promotion of Science

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology

Reference54 articles.

1. Ahlfors, L.V.: Conformal Invariants: Topics in Geometric Function Theory. AMS Chelsea Publishing, New York (2010)

2. Bishop, C.J.: Function theoretic characterizations of Weil–Petersson curves. Rev. Mat. Iberoam. 38, 2355–2384 (2022)

3. Bishop, C.J.: Weil–Petersson Curves, Conformal Energies, $$\beta $$-Numbers, and Minimal Surfaces. Preprint

4. Bourdaud, G., Sickel, W.: Changes of variable in Besov spaces. Math. Nachr. 198, 19–39 (1999)

5. Bourdaud, G.: Changes of variable in Besov spaces II. Forum Math. 12, 545–563 (2000)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The $p$-integrable Teichmüller space for $p \geqslant 1$;Proceedings of the Japan Academy, Series A, Mathematical Sciences;2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3