Abstract
AbstractSimilar to the Bers simultaneous uniformization, the product of thep-Weil–Petersson Teichmüller spaces for$$p \ge 1$$p≥1provides the coordinates for the space ofp-Weil–Petersson embeddings$$\gamma $$γof the real line$${\mathbb {R}}$$Rinto the complex plane$${\mathbb {C}}$$C. We prove the biholomorphic correspondence from this space to thep-Besov space of$$u=\log \gamma '$$u=logγ′on$${\mathbb {R}}$$Rfor$$p>1$$p>1. From this fundamental result, several consequences follow immediately which clarify the analytic structures concerning parameter spaces ofp-Weil–Petersson curves. Specifically, it implies that the correspondence of the Riemann mapping parameters to the arc-length parameters preserving the images of curves is a homeomorphism with bi-real-analytic dependence of the change of parameters. This is analogous to the classical theorem of Coifman and Meyer for chord-arc curves.
Funder
Japan Society for the Promotion of Science
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Ahlfors, L.V.: Conformal Invariants: Topics in Geometric Function Theory. AMS Chelsea Publishing, New York (2010)
2. Bishop, C.J.: Function theoretic characterizations of Weil–Petersson curves. Rev. Mat. Iberoam. 38, 2355–2384 (2022)
3. Bishop, C.J.: Weil–Petersson Curves, Conformal Energies, $$\beta $$-Numbers, and Minimal Surfaces. Preprint
4. Bourdaud, G., Sickel, W.: Changes of variable in Besov spaces. Math. Nachr. 198, 19–39 (1999)
5. Bourdaud, G.: Changes of variable in Besov spaces II. Forum Math. 12, 545–563 (2000)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The $p$-integrable Teichmüller space for $p \geqslant 1$;Proceedings of the Japan Academy, Series A, Mathematical Sciences;2023-06-19