Monotone reducibility over the Cantor space

Author:

Dougherty Randall

Abstract

Define the partial ordering \leqslant on the Cantor space ω 2 {}^\omega 2 by x y x \leqslant y iff n x ( n ) y ( n ) \forall n\,x(n) \leqslant y(n) (this corresponds to the subset relation on the power set of ω \omega ). A set A ω 2 A \subseteq {}^\omega 2 is monotone reducible to a set B ω 2 B \subseteq {}^\omega 2 iff there is a monotone (i.e., x y f ( x ) f ( y ) x \leqslant y \Rightarrow f(x) \leqslant f(y) ) continuous function f : ω 2 ω 2 f:{}^\omega 2 \to {}^\omega 2 such that x A x \in A iff f ( x ) B f(x) \in B . In this paper, we study the relation of monotone reducibility, with emphasis on two topics: (1) the similarities and differences between monotone reducibility on monotone sets (i.e., sets closed upward under \leqslant ) and Wadge reducibility on arbitrary sets; and (2) the distinction (or lack thereof) between ‘monotone’ and ‘positive,’ where ‘positive’ means roughly ‘a priori monotone’ but is only defined in certain specific cases. (For example, a Σ 2 0 \Sigma _2^0 -positive set is a countable union of countable intersections of monotone clopen sets.) Among the main results are the following: Each of the six lowest Wadge degrees contains one or two monotone degrees (of monotone sets), while each of the remaining Wadge degrees contains uncountably many monotone degrees (including uncountable antichains and descending chains); and, although ‘monotone’ and ‘positive’ coincide in a number of cases, there are classes of monotone sets which do not match any notion of ‘positive.’

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference14 articles.

1. Monotone reducibility and the family of infinite sets;Cenzer, Douglas;J. Symbolic Logic,1984

2. Monotone but not positive subsets of the Cantor space;Dougherty, Randall;J. Symbolic Logic,1987

3. Sequential discreteness and clopen-𝐼-Boolean classes;Dougherty, Randall;J. Symbolic Logic,1987

4. Universal homogeneous Boolean algebras;Keisler, H. Jerome;Michigan Math. J.,1966

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Borel ideals;Annals of Pure and Applied Logic;1994-12

2. On analytic filters and prefilters;Journal of Symbolic Logic;1990-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3