Abstract
Kantorovich and Livenson [6] initiated the study of infinitary Boolean operations applied to the subsets of the Baire space and related spaces. It turns out that a number of interesting collections of subsets of the Baire space, such as the collection of Borel sets of a given type (e.g. the Fσ sets) or the collection of analytic sets, can be expressed as the range of an ω-ary Boolean operation applied to all possible ω-sequences of clopen sets. (Such collections are called clopen-ω-Boolean.) More recently, the ranges of I-ary Boolean operations for uncountable I have been considered; specific questions include whether the collection of Borel sets, or the collection of sets at finite levels in the Borel hierarchy, is clopen-I-Boolean.The main purpose of this paper is to give a characterization of those collections of subsets of the Baire space (or similar spaces) that are clopen-I-Boolean for some I. The Baire space version can be stated as follows: a collection of subsets of the Baire space is clopen-I-Boolean for some I iff it is nonempty and closed downward and σ-directed upward under Wadge reducibility, and in this case we may take I = ω2. The basic method of proof is to use discrete subsets of spaces of the form K2 to put a number of smaller clopen-I-Boolean classes together to form a large one. The final section of the paper gives converse results indicating that, at least in some cases, ω2 cannot be replaced by a smaller index set.
Publisher
Cambridge University Press (CUP)
Reference13 articles.
1. Steel J. , Determinateness and subsystems of analysis, Doctoral Dissertation, University of California, Berkeley, California, 1977.
2. Miller A. , Some problems in set theory and model theory, Doctoral Dissertation, University of California, Berkeley, California, 1978.
3. Separation principles in the hierarchies of classical and effective descriptive set theory
4. On some weakly compact spaces and their products
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献